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Algebraic Grid Generation about Wing-Fuselage Bodies
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An algebraic procedure for generating boundary-fitted grids about wing-fuselage configurations is presented.
A wing-fuselage configuration consists of two aircraft components specified by cross sections and mathematic-
ally represented by Coons' patches. Several grid blocks are constructed to cover the entire region surrounding
the configuration, and each grid block maps into a computational cube. Grid points are first determined on the
six boundary surfaces of a block and then in the interior. Grid points on the surface of the configuration are
derived from the intersection of planes with the Coons' patch definition. Approximate arc length distributions
along the resulting grid curves concentrate and disperse grid points. The two-boundary technique and transfinite
interpolation are used to determine grid points on the remaining boundary surfaces and block interiors.

Introduction
A N important aspect of simulating fluid motion about

-/^complex aerodynamic bodies is grid generation. For
creating grids about wing-fuselage bodies, an algebraic ap-
proach based on Coons' patch surface definition,1 the two-
boundary grid-generation technique,2"4 and transfinite inter-
polation5"7 is presented. The process is divided into five steps:

1) Define the wing and fuselage surfaces and their
intersection.

2) Determine grids on the wing and fuselage surfaces.
3) Define the remaining exterior boundary surfaces.
4) Determine grids on the exterior boundary surfaces.
5) Determine the interior grid.
This approach combines with algebraic grid generation

aircraft-surface definition concepts that have been developed
over many years. For the wing-fuselage grids described
herein, four adjoining grids are specified. They are the top-
front, bottom-front, top-back, and bottom-back grids; and
the step-by-step demonstration of the grid-generation pro-
cedure is done with the top-front grid.

Wing-Fuselage Surface Definition
The components of an aircraft can be described by the

Harris geometry8 in terms of cross sections. A fuselage is
described by cross sections along the x-body axis, and a wing
is described as airfoil sections in the spanwise z direction. In
turn, each airfoil section is defined by the coordinates of the
camber line and Ay coordinates. An orthographic view of the
defining data describing a wing-fuselage configuration is
shown in Fig. 1. Cubic splines are fit along and across the
specified cross-sectional data for each component.9 The
specified positional and derivative data (obtained from the
spline fits) provide corner parameters for a Coons' patch
surface definition for a component. Each patch is of the
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The vector-valued function V(u,w) represents the Carte-
sian coordinates (x,y,z) for a patch definition, and the
variables u and w are independent parametric variables. The
subscripts u and w matrix B denote differentiation with
respect to the parametric independent variables. The patch
description is a bicubic representation of the region bounded
by the sides of the patch. An ordered set of patches
represents the surface of a component, and Ref. 9 describes
a widely available computer program for performing the
spline fits, saving the patch description, and plotting enriched
surface components (Fig. 2).

Wing-Fuselage Intersection
In order to map the wing and fuselage surfaces into two

adjoining planar surfaces in a computational coordinate
system (Fig. 3), the intersection of the two components must
be found. The process we propose is to find the intersection
of a sequence of planes with the wing and fuselage com-
ponents, and then compute the intersection of the planar
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curves.10 The reason for taking this approach is that the
intersection of arbitrarily defined planes with the com-
ponents of a configuration is an existing capability of the
surface-definition program described in Ref. 9. The formula-
tion of the plane-patch intersection is obtained by rewriting
Eq. (1) as

x=UCB(x)CTWT

y=UCB(y)CTWT

z=UCB(z)CTWT

and substituting the comonents in the equation of a plane

WING-FUSELAGE

COMPUTATIONAL CUBE

Fig. 3 Wing-fuselage mapping to the computational domain.
where a, b, c, and d are constants derived from a three-point
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Fig. 1 Initial definition of a wing-fuselage configuration.

d = 0

Fig. 4 Patch definition and patch-plane intersection.

Fig. 2 Enriched plot of the wing-fuselage configuration.
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INTERSECTION POINTS

Fig. 5 Intersection of planes orthogonal to the jc-axis with the wing
and fuselage.

K

Fig. 6 Coordinate axes.
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description. This leads to the equation

where

(2)

is a matrix of constants. Assigning a value to one of the
parametric variables u or w results in Eq. (2) becoming a
cubic polynomial with respect to the other parametric
variable. The real root of Eq. (2), interior to the patch
boundaries for a sequence of values of the specified
paramteric variable, defines a patch-plane intersection curve
(Fig. 4).

The intersection of a wing-surface component and
fuselage-surface component is found by first determining the
intersection of the patch definition of each component with a
sequence of planes along, and orthogonal to, the x-body axis
(Fig. 5). This is accomplished by using the computer code
described in Ref. 9 as a kernel that is driven by another code
(driver program), which specifies the planes, orders the coor-
dinates, deletes multiple points at the intersection of
neighboring patches, and searches to find the intersection of
the planar curves from the two components. The leading and
trailing points of the wing-fuselage intersection occur where
there is only one intersection point on the plane-patch in-
tersection curves. A search is performed by the driver code
to define these terminating points accurately.

Coordinate Axes, Grids, and Indices
For the grids described herein, the physical point cor-

responding to the origin of the computational coordinate
system is the leading point of the wing-fuselage intersection.
The wing-fuselage intersection curve corresponds to the £
axis. A curve that extends from the leading wing-fuselage in-
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Fig. 7 Boundary curves for fuselage grid definition.

CAP

FUSELAGE

FRONT
Fig. 8 Top-front boundary surface grids.

tersection point to the leading nose point on the fuselage cor-
responds to the r] axis, and a curve along the leading edge of
the wing from the wing-fuselage intersection point to the
wing tip corresponds to the f axis (Fig. 6). A grid is
represented by Ft(I,J,K), where

Ztd,J,K)}

and /= 1,2,. ..L, /= 1,2,. ..M, and K= 1,2,. ..N. The top-front
fuselage grid is denoted by F^I.J.K). The computational
coordinates are related to indices /, /, and K by

Fuselage Grid
The fuselage grid computation is preceded by the com-

putation of a distribution of grid points (Fig. 7) on the wing-
fuselage intersection curve 77 = Q(Fl (7,1,1), 7=1,2,...L) and
along a curve on top of the fuselage at ry = l(F1(/,M,l),
/= 1,2,...L). The computational £ coordinate is uniformly
discretized on the unit interval 0 < £ < 1, and the £ coordinate
is related by one-to-one functions to the normalized approx-
imation arc length along the wing-fuselage intersection and
top boundary curves. The physical coordinates of the in-
tersection curve and the top boundary curve are related to
the normalized approximate arc lengths by linear interpola-
tion into previously stored tables of coordinates vs arc
lengths. Grid spacing3'4'11 in the physical domain is con-
trolled by single-valued functions relating computational
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Fig. 9 Selected grid surfaces—top.

coordinates to normalized approximate arc lengths. Low
slopes in these functions correspond to a physical grid con-
centration, and high slopes correspond to physical grid
dispersions.

Having the distributions of grid points along the wing-
fuselage intersection curve and the fuselage-top boundary
curve, grid curves (dense sets of points) are computed on the
fuselage surface and stored. This is done with Coons' patch
surface representation of the fuselage and plane-patch in-
tersection capability described earlier. In this case, the planes
are defined by three points of which two are on the bound-
ary curves at 77 = 0 and rj = 1. The third point is defined to be
on the x-body axis with the x coordinate equal to the x coor-
dinate of the wing-fuselage grid point. With the computer
program described in Ref. 8 as a kernel, a driver program
specifies the points defining the plane, orders the plane-patch
intersection points, deletes multiple points, computes the ap-
proximate arc length along the curves from the wing-fuselage
intersection boundary to the fuselage-top boundary, and
stores the coordinates of the curves as a function of the nor-
malized approximate arc length. The distribution of the grid
points in the TJ direction is obtained in the same manner as
previously discussed for the wing-fuselage intersection and
the top boundary curve. Figure 8 shows a fuselage grid with
concentration toward the leading wing-fuselage intersection
curve. Figure 9 shows the same configuration but with con-
centration toward both the leading and trailing wing-fuselage
intersection points. The fuselage surface grid is represented
by F!(7,7,1), 7=1,2,...L, 7=1,2,...M.

Wing Grid
The plane-patch intersection capability and arc-length

spacing-control functions are again used to determine the
wing grid. Also, the concept of transfinite interpolation5'7 is
used to conform the grid points near the wing-fuselage in-
tersection to the shape of the wing-fuselage intersection
curve. The process is to establish the normalized approx-
imate arc lengths along the leading and trailing edges of the
wing in the spanwise direction and to express the coordinates
as tabular functions of the arc lengths. A grid spacing-

Fig. 10 Selected grid surfaces — bottom.

control function11 relating the f coordinate to the normalized
approximate arc length is determined. Given the spacing
distributions and a discrete set of f coordinates, physcial
coordinates ^(1,1,^), #=1,2,..JV, /^(L,!,*), #=1,2,..JV
are computed on the leading and trailing edges of the wing.
for each f coordinate, a plane-patch intersection of the wing
is computed with the third point for the plane specified by
the x and z coordinates of the leading-edge point and a
distinctly different y coordinat.e The procedures used in the
driver program for the fuselage are applied to the wing. The
grid-spacing distribution function for the wing- fuselage in-
tersection curve in the £ coordinate direction is used to com-
pute an intermediate wing-surface grid E(I,K)9 7=1,2,..:L,
K= 1,2,... N. In order to confrom the wing-surface grid to
the shape of the winge- fuselage intersection curve, the final
wing-surface grid is computed by

(3)

where

-\

7= 1,2,...L, K= 1,2,.. JV, and k is a positive constant. Figure
8 shows a wing surface grid with grid concentration toward
the wing-fuselage intersection curve.

Unconstrained Surface Grids
Six physical grid surfaces correspond to the six sides of the

computational cube. Two of the surfaces are constrained to
lie on the wing and fuselage surfaces. The remaining four
grid surfaces are not prespecified and are referred to as the
side, front, back, and cap grid surfaces.

We have tried many approaches for the next step, which is
the computation of the cap grid. What seems to work best is
to establish the cap surface and grid using the same pro-
cedure applied to the fuselage. The cap surface is defined
with cross sections exactly as the fuselage is defined, and the
cap grid is computed exactly as the fuselage grid is, with the
same software except that the grid curve at 77 = 0 is now
along the wing tip. The top-front cap grid is denoted by

), 7=1,2,...L, 7=l,2,...Mand is shown in Fig. 8.
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The side grid surface is defined in the x-y plane down the
center of the fuselage; this grid is planar. The bottom
boundary grid curve is specified from the fuselage grid, and
the top boundary grid curve is specified by the cap grid. A
two-dimensional version of the two-boundary technique4 is
applied directly with minor changes to pre-existing software.
The only requirement is choosing the clustering control for
the cubic-connecting function. The top-front side boundary
grid surface is defined by F^I.M.K), 7=1,2, ...L,
#=1,2,..JV.

The remaining exterior boundary grid surfaces are the
front and the back. The boundary grid curves on all four
sides of both surfaces are specified by the fuselage, wing,
cap, and side grids. At this point, the interior grid surfaces
could be computed using linear blending with transfinite in-
terpolation. Instead, we have chosen to use the cubic blend-
ing found in the two-boundary technique for an intermediate
grid between the fuselage and cap grids and exponential
blending with the side and wing grids. A three-dimensional
version of the two-boundary technique is incorporated into
the concept of transfinite interpolation to compute the front
and back grid surfaces. The two-boundary technique is used
to compute intermediate grid surfaces [E(19J,K) and
E(L,J,K)9 /=1,2,...M, K=i,2,...N], connecting the
fuselage-boundary grid curves to the outer-boundary grid
curves. The only additional information that must be
specified is a control function that defines the grid clustering
along the cubic-connecting function. Transfinite interpola-
tion is used in a manner similar to the wing-grid definition.
In this instance, it is used to conform the front and back grid
surfaces to the side-boundary grid curve and the wing-
boundary grid curve. The formulation is

(4)

l=£(/,y,A)+a(/)[F,(

+ P(J)[Fi(I,M,K) E(I,M,K)}

where

in , exp{-A:[(/-l)/(M-]
-\

0(7) = ek-\

and_/= 1 and L. The parameter A: controls the effect of the
side boundaries (7=7 and M) on the interior grid (7=
2,3,...M— 1). The front and back grids are shown in Fig. 8.

Interior Grid Computation
Once the exterior grid surfaces corresponding to the six

sides of the computational cube have been found, an interior
grid is described by transfinite interpolation using the follow-
ing linear-blending functions.

D(I,J,K) = [l- (K- - 1)]

(5)

E(I,J,K) =D(I,J,K) + [ 1 - (7- 1)/(M- 1)] [F,(I, \,K)

-£>(/,!,#) ] + [(/- 1)/(M- 1)] [F{ (I,M,K)-D(IfM,K) ]

(6)

Fl(I,J,K)=E(I,J,K)+ [1- (7-

(7)

where 7=1,2,..X, 7=1,2,...M, and K=1,2,...N. Selected
interior-grid surfaces for the top-front and top-back grids
are shown in Fig. 9, Figure 10 shows the bottom-front and
bottom-back grids.

Other Configurations
Many topological complexities that can occur on real

wing-fuselage configurations have not been considered in
this paper. For instance, placing the wing very high or very
low relative to the fuselage can create too much grid concen-
tration on the part of the fuselage near the wing-fuselage in-
tersection. Also, if the wing has a sharp leading edge, the C-
type grid may not be satisfactory. On the other hand, the
component parts of the procedure, such as surface represen-
tation, patch-plane intersections, and grid spacing control,
are applicable to a wide variety of grid-generation problems.

Conclusion
A boundary-fitted wing-fuselage grid with several grid

clusterings has been produced using Coons' patch surface
definition, plane-patch intersections, and algebraic interpola-
tion. Several conclusions can be drawn from this
demonstration:

1) It is feasible to specify an aircraft surface independent
of the grid-genration process, and highly developed tech-
niques and software developed for linear aerodynamics and
model making can be used.

2) A building-block concept in which several adjoining
physical grids map to a computational cube simplifies the
three-dimensional grid-generation process.

3) The intersection of a simple surface (plane) with the
configuration surface established curves along which grid
points are distributed.

4) Once the grids on the configuration surface are de-
fined, algebraic grid-generation techniques are readily applied
to obtain the remaining boundary and interior grids.
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